On the Jensen type inequality for generalized Sugeno integral
نویسندگان
چکیده
We prove necessary and sufficient conditions for the validity of Jensen type inequalities for generalized Sugeno integral. Our proofs make no appeal to the continuity of neither the fuzzy measure nor the operators. For several choices of operators, we characterize the classes of functions for which the corresponding inequalities are satisfied.
منابع مشابه
An equivalent condition to the Jensen inequality for the generalized Sugeno integral
For the classical Jensen inequality of convex functions, i.e., [Formula: see text] an equivalent condition is proved in the framework of the generalized Sugeno integral. Also, the necessary and sufficient conditions for the validity of the discrete form of the Jensen inequality for the generalized Sugeno integral are given.
متن کاملGeneralization of the Lyapunov type inequality for pseudo-integrals
We prove two kinds of Lyapunov type inequalities for pseudo-integrals. One discusses pseudo-integrals where pseudo-operations are given by a monotone and continuous function g. The other one focuses on the pseudo-integrals based on a semiring 0; 1 ½ ; sup; ð Þ , where the pseudo-multiplication is generated. Some examples are given to illustrate the validity of these inequalities. As a generali...
متن کاملOn Stolarsky inequality for Sugeno and Choquet integrals
Keywords: Fuzzy measure Sugeno integral Choquet integral Stolarsky's inequality a b s t r a c t Recently Flores-Franulič, Román-Flores and Chalco-Cano proved the Stolarsky type inequality for Sugeno integral with respect to the Lebesgue measure k. The present paper is devoted to generalize this result by relaxing some of its requirements. Moreover, Stolar-sky inequality for Choquet integral is ...
متن کاملJensen Inequality with Subdifferential for Sugeno Integral
The classical Jensen inequality for concave function φ is adapted for the Sugeno integral using the notion of the subdifferential. Some examples in the framework of the Lebesgue measure to illustrate the results are presented.
متن کاملStolarsky Type Inequality for Sugeno Integrals on Fuzzy Convex Functions
Recently, Flores-Franulič et al. [A note on fuzzy integral inequality of Stolarsky type, Applied Mathematics and Computation 208 (2008) 55-59] proved the Stolarsky’s inequality for the Sugeno integral on the special class of continuous and strictly monotone functions. This result can be generalized to a general class of fuzzy convex functions in this paper. We also give a fuzzy integral inequal...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Inf. Sci.
دوره 266 شماره
صفحات -
تاریخ انتشار 2014